Model 218 Temperature Monitor

- Eight sensors read twice each second
- Supports platinum RTDs, diodes and NTC resistors
- Cryogenic and high temperature applications
- High accuracy, high resolution
- Eight readings displayed in K, °C, V or Ω
- Flexible interface options

Description
The Model 218 is an eight input temperature monitor that can be used with diode or resistive temperature sensors. The measurement input was designed for the demands of cryogenic temperature measurement. The monitor’s low noise, high resolution and wide operating range make it ideal for noncryogenic applications as well.

There are two versions of the Model 218, the Model 218S and Model 218E. Both versions have the same sensor measurement and display capabilities but include different interfaces.

The **Model 218S** has many interface features intended for system integration and automated data collection that make it useful for cryogenic and noncryogenic applications. The Model 218S includes two computer interfaces, IEEE-488 and serial. Data logging memory and printer capability are included to help automate data collection. Two analog voltage outputs, an alarm feature and eight relays enhance system integration.

The **Model 218E** is configured to have a lower selling price but maintains the same level of performance. It includes a serial computer interface, data logging memory and printer capability. The alarm feature is also present on the Model 218E, but there are no relays. The **218E has all the features and specifications of the 218S except IEEE-488 interface, analog voltage outputs and relays.**

PTC Resistor Measurements
The Model 218 can read up to eight 100 Ω, 1000 Ω PTC (positive temperature coefficient) or any other PTC resistive sensors using their standard curves or individual calibrations. NTC resistor sensors are typically used in specialized applications such as magnetic and radiation environments. In some applications, the constant current excitation of the Model 218 may limit the useful range of NTC resistor sensors (see the Model 218 Sensor Input Performance Chart on the next page).

Configurable Sensor Inputs
The Model 218 has eight constant current sources (one for each input) which can be configured for a variety of sensors. The inputs can be configured from the front panel or via computer interface and are grouped in two sets of four. Each set of four inputs is configured for the same sensor type (i.e. all 100 Ω Platinum, all Silicon Diodes, etc.).

Sensor Input Reading Capability
The Model 218 has two high resolution A/D converters to increase its update rate. It can read sensor inputs more quickly than other scanning monitors because it does not have to wait for current source switching. The result is 16 new readings per second allowing all inputs to be read twice each second. Inputs can be turned off to obtain a higher reading rate on fewer sensors. All readings can be read from the instrument with the IEEE-488 interface. The serial interface can also be used for all readings if it is operated efficiently. The display is updated twice per second.

Temperature Response Curves
The Model 218 has standard temperature sensor response curves for silicon diodes and platinum RTDs. It can support a wide variety of temperature sensors that do not have a standard curve because a unique 200 point user curve can be stored for each of the eight inputs. CalCurves™ for Lake Shore calibrated sensors can be stored as user curves. User curves can be entered from the front panel or with a computer interface. The built in SoftCal™ algorithm can also be used to generate improved curves for DT-470 diodes and platinum RTDs that are stored as user curves.

Configurable Display
The eight display locations on the Model 218 are user configurable. These locations can be used to display a single readout for each of the eight inputs or for more than one readout for fewer inputs. Sources for readout data are temperature units, sensor units and results of the math function. Input number and data source are always displayed for convenience.

Lake Shore ☎ (614) 891-2244 Fax: (614) 818-1600 www.lakeshore.com EMail: sales@lakeshore.com
Sensor Input Performance Chart

<table>
<thead>
<tr>
<th>Sensor Type</th>
<th>Silicon Diode</th>
<th>GaAlAs Diode</th>
<th>100Ω Platinum RTD</th>
<th>500Ω Full Scale</th>
<th>100Ω Platinum RTD</th>
<th>Cernox™ RTD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature coefficient</td>
<td>Negative</td>
<td>Negative</td>
<td>Positive</td>
<td>Positive</td>
<td>Negative</td>
<td></td>
</tr>
<tr>
<td>Sensor units</td>
<td>Volts (V)</td>
<td>Volts (V)</td>
<td>Ohms (Ω)</td>
<td>Ohms (Ω)</td>
<td>Ohms (Ω)</td>
<td></td>
</tr>
<tr>
<td>Input range</td>
<td>0 - 2.5 V</td>
<td>0 - 7.5 V</td>
<td>0 - 500 Ω</td>
<td>0 - 5000 Ω</td>
<td>0 - 7500 Ω</td>
<td></td>
</tr>
<tr>
<td>Sensor excitation</td>
<td>10 µA ±0.01%</td>
<td>10 µA ±0.01%</td>
<td>1 mA ±0.3%</td>
<td>1 mA ±0.3%</td>
<td>10 µA ±0.01%</td>
<td></td>
</tr>
<tr>
<td>Display resolution</td>
<td>100 µV</td>
<td>100 µV</td>
<td>10 mΩ</td>
<td>100 mΩ</td>
<td>100 mΩ</td>
<td></td>
</tr>
</tbody>
</table>

Example LSCI sensor
- DT-470-CO-13 with 1.4H Cal.
- TG-120SD with 1.4H Cal.
- PT-103 with 1.4J Cal.
- PT-10011 with 1.4J Cal.
- CX-1050-SD with 4L Cal.

Temperature range
- 1.4 - 475 K
- 1.4 - 475 K
- 30 - 800 K
- 30 - 800 K
- 3.5 - 325 K

Standard curve
- LSCI Curve 10
- Requires Calibration
- DIN 43760
- Requires Calibration
- Requires Calibration

Typical sensor sensitivity
- -30 mV/K at 4.2 K
- -1.9 mV/K at 77 K
- -2.4 mV/K at 77 K
- -2.2 mV/K at 475 K
- -0.19 mV/K at 30 K
- -0.39 mV/K at 300 K
- -0.35 mV/K at 675 K
- -0.33 mV/K at 800 K

Measurement resolution:

<table>
<thead>
<tr>
<th>Sensor units</th>
<th>Temperature equivalence</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 µV</td>
<td>1 mK at 4.2 K</td>
</tr>
<tr>
<td>20 µV</td>
<td>1 mK at 77 K</td>
</tr>
<tr>
<td>20 µV</td>
<td>10 mK at 77 K</td>
</tr>
<tr>
<td>20 µV</td>
<td>10 mK at 300 K</td>
</tr>
<tr>
<td>20 µV</td>
<td>10 mK at 475 K</td>
</tr>
<tr>
<td>2 mΩ</td>
<td>10.6 mK at 30 K</td>
</tr>
<tr>
<td>2 mΩ</td>
<td>10 mK at 77 K</td>
</tr>
<tr>
<td>2 mΩ</td>
<td>10 mK at 300 K</td>
</tr>
<tr>
<td>2 mΩ</td>
<td>10 mK at 675 K</td>
</tr>
<tr>
<td>2 mΩ</td>
<td>10 mK at 800 K</td>
</tr>
<tr>
<td>20 mΩ</td>
<td>10.6 mK at 30 K</td>
</tr>
<tr>
<td>20 mΩ</td>
<td>10 mK at 77 K</td>
</tr>
<tr>
<td>20 mΩ</td>
<td>10 mK at 300 K</td>
</tr>
<tr>
<td>20 mΩ</td>
<td>10 mK at 675 K</td>
</tr>
<tr>
<td>20 mΩ</td>
<td>10 mK at 800 K</td>
</tr>
<tr>
<td>50 mΩ</td>
<td>1.0 mK at 4.2 K</td>
</tr>
<tr>
<td>50 mΩ</td>
<td>33.3 mK at 77 K</td>
</tr>
<tr>
<td>50 mΩ</td>
<td>500.0 mK at 300 K</td>
</tr>
</tbody>
</table>

Electronic accuracy:

<table>
<thead>
<tr>
<th>Sensor units</th>
<th>Temperature equivalence</th>
</tr>
</thead>
<tbody>
<tr>
<td>±160 µV ±0.01% RDG</td>
<td>±160 µV ±0.02% RDG</td>
</tr>
<tr>
<td>±11 mK at 4.2 K</td>
<td>±6 mK at 10 K</td>
</tr>
<tr>
<td>±138 mK at 77 K</td>
<td>±300 mK at 77 K</td>
</tr>
<tr>
<td>±150 mK at 300 K</td>
<td>±150 mK at 475 K</td>
</tr>
<tr>
<td>±77 mK at 475 K</td>
<td>±110 mK at 475 K</td>
</tr>
<tr>
<td>±10 mK at 77 K</td>
<td>±25 mK at 30 K</td>
</tr>
<tr>
<td>±150 mK at 77 K</td>
<td>±18 mK at 77 K</td>
</tr>
<tr>
<td>±162 mK at 675 K</td>
<td>±18 mK at 77 K</td>
</tr>
<tr>
<td>±187 mK at 800 K</td>
<td>±187 mK at 800 K</td>
</tr>
<tr>
<td>±1 mK at 4.2 K</td>
<td>±0.06 µV ±0.02% RDG</td>
</tr>
<tr>
<td>±11 mK at 4.2 K</td>
<td>±0.04 µV ±0.04% RDG</td>
</tr>
<tr>
<td>±138 mK at 77 K</td>
<td>±40 mK at 30 K</td>
</tr>
<tr>
<td>±150 mK at 300 K</td>
<td>±33 mK at 77 K</td>
</tr>
<tr>
<td>±77 mK at 475 K</td>
<td>±135 mK at 300 K</td>
</tr>
<tr>
<td>±10 mK at 77 K</td>
<td>±162 mK at 675 K</td>
</tr>
<tr>
<td>±10 mK at 800 K</td>
<td>±370 mK at 800 K</td>
</tr>
<tr>
<td>±500 mK at 300 K</td>
<td>±1.44 mK at 300 K</td>
</tr>
</tbody>
</table>

Temperature accuracy incl. electronic accuracy, CalCurve™ and calibrated sensor
- ±31 mK at 4.2 K
- ±21 mK at 10 K
- ±45 mK at 30 K
- ±60 mK at 30 K
- ±193 mK at 77 K
- ±390 mK at 77 K
- ±38 mK at 77 K
- ±53 mK at 77 K
- ±138 mK at 300 K
- ±190 mK at 300 K
- ±105 mK at 300 K
- ±170 mK at 300 K
- ±177 mK at 475 K
- ±210 mK at 475 K
- ±262 mK at 675 K
- ±470 mK at 800 K
- ±287 mK at 800 K
- ±9 mK at 4.2 K(1)
- ±138 mK at 77 K(1)
- ±1.284 mK at 300 K(1)

Magnetic field use

<table>
<thead>
<tr>
<th>Recommended for</th>
<th>T ≥ 60 K and B ≤ 3 T</th>
<th>Recommended for</th>
<th>T > 4.2 K and B ≤ 5 T</th>
<th>Recommended for</th>
<th>T > 40 K and B ≤ 2.5 T</th>
<th>Recommended for</th>
<th>T > 2 K and B ≤ 19 T</th>
</tr>
</thead>
</table>

(1) Specified accuracy does not include effects of thermal EMFs. An error of 3 mΩ will result from each 1 µV of thermal EMF voltage. In a well designed system, thermal EMF voltage should be less than 10 µV.

(2) No longer available from Lake Shore.
Specifications

Thermometry
Number of inputs: Eight
Input configuration: Inputs separated into two groups of four. Each group must be the same input type.
Measurement type: Four lead differential
Excitation: Eight constant current sources
Supported sensors: Silicon Diodes, GaAlAs Diode, 100 Ω Platinum RTD, 1000 Ω Platinum RTD, Germanium RTD, Carbon Glass™ RTD, Cernox™ RTD, Rox™ RTD and Thermox™ RTD
Accuracy: See performance chart
Resolution: See performance chart
Maximum update rate: 16 readings/s
Standard curves: DT-470, CTI-C, DT-500D, PT-100, PT-100, PT-1000
User curves: Room for eight (one per input), 200 point max. for each
SoftCal™: Improves accuracy of DT-470 diode to ±0.25 K from 30 K to 375 K. Improves accuracy of Platinum RTDs to ±0.25 K from 70 K to 325 K. Stored as user curves.
Math: Maximum, minimum and linear equation
Filter: Averages 2 to 64 input readings
Display annunciators: R Remote Operation
A Alarm
D Data Logging
> Max
< Min
/ Linear
Display update rate: All inputs displayed twice in one second
Temperature display resolution: 0.001° from 0° to 99.999°, 0.01° from 100° to 999.99°, 0.1° above 1000°.
Sensor units display resolution: Sensor dependent, to five digits

Front Panel
Display type: Four line by 20 character backlit LCD display
Number of input displays: 1 to 8
Displays units: °C, °F, V, Ω
Display update rate: All inputs displayed twice in one second
Ambient temperature: 15° - 35°C (59° - 95°F) to specified accuracy; 10° - 40°C (50° - 104°F) with reduced accuracy
Power requirement: 100, 120, 220, 240VAC, +5% -10%, 50 or 60Hz, 18 VA
Size: 217 mm wide x 90 mm high x 317 mm deep (8.5” x 3.5” x 12”), half rack
Weight: 3 kg (6.6 lb)
Approval: CE Mark

Data Logging
Readings: 1 to 8 in a record
Operation: Data log records can be stored in memory or sent to the printer. Stored data may be displayed, printed or retrieved by computer interface.
Data memory: Maximum of 1500 single reading records, nonvolatile

General

Ordering Information
Part number Description
218S Standard Temperature Monitor
(8 inputs, IEEE-488 and serial interface, alarms, relays, analog output, data logging, printer support)
218E Economy Temperature Monitor
(8 inputs, serial interface, alarms, data logging, printer support)
8001 CalCurve™, Factory Installed
Consists of the breakpoint table from a calibrated sensor stored in the instrument
8002 CalCurve™, Field Installed
Consists of the breakpoint table from a calibrated sensor stored in a NOVRAM for installation at the customer location
MAN-218 Model 218 User’s Manual

Interface
IEEE-488.2 Interface (218S):
SH1, AH1, TS, L4, SR1, RL1, P00, DC1, DT0, C0, E1
Serial interface: RS-232C Electrical, DE-9 Connector, 9600 BAUD
Printer capability: Support for serial printer through serial interface port. Used with data log parameters.
Alarms
Number: 16 - High and low for each input
Data source: Temperature, sensor units, linear equation
Settings: Units, High Setpoint, Low Setpoint, Deadband, Latching or Nonlatching, Audible on or off
Actuators: Display annunciator, beeper, relays (218S)
Relays (218S)
Number: Eight
Contacts: Normally open (NO), normally closed (NC) and common (C)
Contact rating: 30 VDC at 5 A
Operation: Each input may be configured to actuate any or all of the eight relays. Relays may be activated on high, low or both alarms for any input, or manually.
Analog Output (218S)
Scale: User selected
Data source: Temperature, sensor units, linear equation, manual
Range: ±10 V
Resolution: 1.25 mV
Accuracy: ±2.5 mV
Minimum load: 1 kΩ

Detachable 120 VAC line cord
IEEE-488 (GPIB) cable
RM-2 Rack Mount Kit
Detachable 120 VAC Line cord
14 pin connector used for relays and analog outputs (218S only) (quantity 2)
14 pin connector used for relays and analog outputs (218S only) (quantity 2)
1 meter (3.3’) long IEEE-488 GPIB computer interface cable assembly. Includes extender which is required to use both IEEE cable and relay terminal block simultaneously

Accessory options included with a new Model 218