BUSINESS OPTIMISATION USING MATHEMATICAL PROGRAMMING
Business Optimisation Using Mathematical Programming

JOSEF KALLRATH

and

JOHN M. WILSON
Dedication

To those who increased my¹ pleasure in mathematics:

Wilhelm Braun (1970-1975)
Klaus Reusch and Wilhelm Gieselmann (1976-1979)

To² Helen, Alex, Tim and Jack.

¹ Josef Kallrath
² John M. Wilson
Contents

List of Figures x

Preface xi

1 Optimisation: Using Models, Validating Models, Solutions, Answers 1
 1.1 Introduction: Some Words on Optimisation 1
 1.2 The Scope of this Book . 6
 1.3 The Significance of Models 7
 1.4 Mathematical Optimisation 9
 1.4.1 A Linear Programming Example 9
 1.4.2 A Typical Linear Programming Problem 14
 1.5 Using Modelling Systems and Software 16
 1.5.1 Implementing a Model 18
 1.5.2 Obtaining a Solution 21
 1.5.3 Interpreting the Output 23
 1.6 Benefiting from and Extending the Simple Model 25
 1.7 A Survey of Real-World Problems 28
 1.8 Summary . 31
 1.9 Appendix to Chapter 1 . 31
 1.9.1 Notation . 31
 1.9.2 A Brief History of Optimisation ⊖ 32

2 The Scope of Problem Formulation and How to Formulate the Problem 37
 2.1 How to Model and Formulate a Problem 37
 2.2 Variables, Indices, Sets and Domains 39
 2.2.1 Indices, Sets and Domains 42
 2.2.2 Summation . 43
 2.3 Constraints . 46
 2.3.1 Types of Constraints 47
 2.3.2 Example . 50
 2.4 Objectives . 50
 2.5 Building More Sophisticated Models 52
2.5.1 A Simple Production Planning Exercise 52
 2.5.1.1 The Model Background 52
 2.5.1.2 Developing the Model 53
2.6 Mixed Integer Programming 54
 2.6.1 Example: A Farmer Buying Calves and Pigs 56
2.7 Interfaces - Spreadsheets and Databases 57
 2.7.1 Example: A Blending Problem 59
 2.7.2 Developing the Model 61
 2.7.3 Re-running the Model with New Data 63
2.8 Creating a Production System 64
2.9 Collecting Data 66
2.10 Modelling Logic 67
2.11 Practical Solution of LP Models 67
 2.11.1 Problem Size 68
 2.11.2 Ease of Solution 68
2.12 Summary 70
2.13 Exercises 70

3 Mathematical Solution Techniques 73
 3.1 Introduction 73
 3.1.1 Standard Formulation of Linear Programming Problems 73
 3.1.2 Slack and Surplus Variables 75
 3.1.3 Underdetermined Linear Equations and Optimisation 76
3.2 Linear Programming 77
 3.2.1 Simplex Algorithm — A Brief Overview 77
 3.2.2 Solving the Boat Problem with the Simplex Algorithm 78
 3.2.3 Interior-Point Methods — A Brief Overview 84
 3.2.4 LP as a Subroutine 86
3.3 Mixed Integer Linear Programming 87
 3.3.1 Solving the Farmer’s Problem with Branch & Bound 87
 3.3.2 Solving Mixed Integer Linear Programming Problems 90
 3.3.3 Cutting-Planes and Branch & Cut 94
3.4 Interpreting the Results 96
 3.4.1 LP Solution 96
 3.4.2 Outputing Results 97
 3.4.3 Dual Value (Shadow Price) 97
 3.4.4 Reduced Costs 98
 3.4.5 Report Writing 99
3.5 Duality 99
 3.5.1 Constructing the Dual Problem 100
 3.5.2 Interpreting the Dual Problem 102
 3.5.3 Duality Gap and Complementarity 103
3.6 Summary 106
3.7 Exercises 106
3.8 Appendix to Chapter 3 107
Contents

3.8.1 Linear Programming — A Detailed Description 107
3.8.2 Computing Initial Feasible LP Solutions 114
3.8.3 LP Problems with Upper Bounds 116
3.8.4 Dual Simplex Algorithm 120
3.8.5 Interior-Point Methods — A Detailed Description . . 120
 3.8.5.1 A Primal-Dual Interior-Point Method 123
 3.8.5.2 Predictor-Corrector Step 126
 3.8.5.3 Computing Initial Points 127
 3.8.5.4 Updating the Homotopy Parameter 127
 3.8.5.5 Termination Criterion 128
 3.8.5.6 Basis Identification and Cross-Over 129
 3.8.5.7 Interior-Point versus Simplex Methods . . . 129
3.8.6 Branch & Bound with LP-Relaxation 130

4 Problems Solvable Using Linear Programming 135
4.1 Trimloss Problem . 135
 4.1.1 Example: A Trimloss Problem in the Paper Industry . 136
 4.1.2 Example: An Integer Trimloss Problem 138
 4.1.3 Other Applications 139
4.2 The Food Mix Problem . 139
 4.2.1 Case Study: Manufacturing Foods 140
4.3 Transportation and Assignment Problems 140
 4.3.1 The Transportation Problem 140
 4.3.2 The Transshipment Problem 143
 4.3.3 The Assignment Problem 144
 4.3.4 Transportation and Assignment Problems occurring
 as Subproblems 147
 4.3.5 Matching Problems 147
4.4 Network Flow Problems . 148
 4.4.1 Illustrating a Network Flow Problem 148
 4.4.2 The Structure and Importance of Network Flow Models . 150
 4.4.3 Case Study: A Telephone Betting Scheduling Problem . 150
 4.4.4 Other Applications of Network Modelling Technique . . 153
4.5 Unimodularity . 153
 4.5.1 A Unimodular Transportation Matrix ⊕ 153
4.6 Summary . 154
4.7 Exercises . 154

5 How Optimisation is Used in Practice: Case Studies in Linear Programming 155
5.1 Optimising the Production of a Chemical Reactor 155
5.2 An Apparently Nonlinear Blending Problem 157
 5.2.1 Formulating the Direct Problem 158
 5.2.2 Formulating the Inverse Problem 160
 5.2.3 Analysing and Reformulating the Model 161
Contents

5.3 Data Envelopment Analysis (DEA) .. 163
 5.3.1 Example Illustrating DEA 164
 5.3.2 Efficiency ... 166
 5.3.3 Inefficiency ... 166
 5.3.4 More than one Input ... 167
 5.3.5 Small Weights .. 168
 5.3.6 Applications of DEA .. 168
 5.3.7 A General Model for DEA 169
5.4 Vector Minimisation and Goal Programming 170
 5.4.1 A Case Study Involving Soft Constraints 173
5.5 Limitations of Linear Programming 175
 5.5.1 Single Objective .. 175
 5.5.2 Assumption of Linearity ... 175
 5.5.3 Satisfaction of Constraints 176
 5.5.4 Structured Situations .. 177
 5.5.5 Consistent and Obtainable Data 177
5.6 Summary ... 178
5.7 Exercises ... 178

6 Modelling Structures Using Mixed Integer Programming 181
 6.1 Using Binary Variables to Model Logical Conditions 181
 6.1.1 General Integer Variables and Logical Conditions 182
 6.1.2 Transforming Logical Expressions into Arithmetical Expressions .. 183
 6.1.3 Logical Expressions with Two Arguments 184
 6.1.4 Logical Expressions with More than Two Arguments 186
 6.2 Logical Restrictions on Constraints 188
 6.2.1 Bound Implications on Single Variables 189
 6.2.2 Bound Implications on Constraints 189
 6.2.3 Disjunctive Sets of Implications 192
 6.3 Modelling Non-Zero Variables ... 194
 6.4 Modelling Sets of All-Different Elements 195
 6.5 Modelling Absolute Value Terms ⊖ 196
 6.6 Modelling Products of Binary Variables 198
 6.7 Special Ordered Sets ... 198
 6.7.1 Special Ordered Sets of Type 1 199
 6.7.2 Special Ordered Sets of Type 2 201
 6.7.3 Linked Ordered Sets .. 205
 6.7.4 Families of Special Ordered Sets 207
 6.8 Improving Formulations by Adding Logical Inequalities 208
 6.9 Summary .. 210
 6.10 Exercises ... 210
8.4.2 A Yield Management Example 264
8.5 Post-Optimal Analysis 266
 8.5.1 Getting Around Infeasibility 266
 8.5.2 Basic Concept of Ranging 268
 8.5.3 Parametric Programming 270
 8.5.4 Sensitivity Analysis in MILP Problems 272
8.6 Summary ... 273

9 User Control of the Optimisation Process and Improving Efficiency 275
 9.1 Preprocessing ... 275
 9.1.1 Presolve ... 276
 9.1.1.1 Arithmetic Tests 276
 9.1.1.2 Tightening Bounds 278
 9.1.2 Disaggregation of Constraints 279
 9.1.3 Coefficient Reduction 280
 9.1.4 Clique Generation 282
 9.1.5 Cover Constraints 283
 9.2 Efficient LP Solving 285
 9.2.1 Warm Starts 285
 9.2.2 Scaling .. 285
 9.3 Good Modelling Practice 286
 9.4 Choice of Branch in Integer Programming 290
 9.4.1 Control of the Objective Function Cut-off 290
 9.4.2 Branching Control 291
 9.4.2.1 Entity Choice 291
 9.4.2.2 Choice of Branch or Node 292
 9.4.3 Priorities .. 292
 9.4.4 Branching for Special Ordered Sets 293
 9.4.5 Branching on Semi-Continuous and Partial Integer Variables ... 294
 9.5 Summary ... 296
 9.6 Exercises ... 296

10 How Optimisation is Used in Practice: Case Studies in Integer Programming 299
 10.1 What Can be Learned from Real-World Problems 299
 10.2 Three Instructive Solved Real-World Problems 300
 10.2.1 Contract Allocation 300
 10.2.2 Metal Ingot Production 302
 10.2.3 Project Planning 303
 10.2.4 Conclusions .. 305
 10.3 A Case Study in Production Scheduling 306
 10.4 Optimal Worldwide Production Plans ⊕ 311
 10.4.1 Brief Description of the Problem 311

10.4.2 Mathematical Formulation of the Model 312
 10.4.2.1 General Framework 312
 10.4.2.2 Time Discretisation 314
 10.4.2.3 Including Several Market Demand Scenarios 314
 10.4.2.4 The Variables .. 315
 10.4.2.5 The State of the Production Network 316
 10.4.2.6 Exploiting Fixed Setup Plans 316
 10.4.2.7 Keeping Track of Mode Changes 316
 10.4.2.8 Coupling Modes and Production 318
 10.4.2.9 Minimum Production Requirements 319
 10.4.2.10 Modelling Stock Balances and Inventories 320
 10.4.2.11 Modelling Transport 321
 10.4.2.12 External Purchase 321
 10.4.2.13 Modelling Sales and Demands 322
 10.4.2.14 Defining the Objective Function 322

10.4.3 Remarks on the Model Formulation 323
 10.4.3.1 Including Minimum Utilisation Rates 323
 10.4.3.2 Exploiting Sparsity 324
 10.4.3.3 Avoiding Zero Right-Hand Side Equations 326
 10.4.3.4 The Structure of the Objective Function 326

10.4.4 Model Performance ... 327

10.4.5 Reformulations of the Model 328
 10.4.5.1 Estimating the Quality of the Solution 328
 10.4.5.2 Including Mode-Dependent Capacities 329
 10.4.5.3 Modes, Change-Overs and Production 330
 10.4.5.4 Reformulated Capacity Constraints 332
 10.4.5.5 Some Remarks on the Reformulation 333

10.4.6 What can be Learned from this Case Study? 333

10.5 A Complex Scheduling Problem ◀ 334
 10.5.1 Description of the Problem 334
 10.5.2 Structuring the Problem 334
 10.5.2.1 Orders, Procedures, Tasks and Jobs 335
 10.5.2.2 Labour, Shifts, Workers and their Relations 336
 10.5.2.3 Machines .. 337
 10.5.2.4 Services .. 337
 10.5.2.5 Objectives .. 337

10.5.3 Mathematical Formulation of the Problem 338
 10.5.3.1 General Framework 338
 10.5.3.2 Time Discretisation 338
 10.5.3.3 Indices .. 339
 10.5.3.4 Data .. 339
 10.5.3.5 Main Decision Variables 339
 10.5.3.6 Other Variables 340
 10.5.3.7 Auxiliary Sets 340

10.5.4 Time-Indexed Formulations 340
10.5.4.1 The δ Formulation 341
10.5.4.2 The α Formulation 342
10.5.5 Numerical Experiments 343
 10.5.5.1 Description of Small Scenarios 343
 10.5.5.2 A Client’s Prototype 345
10.5.6 What can be Learned from this Case Study? 351

10.6 Telecommunication Service Network ϖ 352
10.6.1 Description of the Model 353
 10.6.1.1 Technical Aspects of Private Lines 353
 10.6.1.2 Tariff Structure of Private Line Services 353
 10.6.1.3 Demands on Private Line Services 355
 10.6.1.4 Private Line Network Optimisation 355
10.6.2 Mathematical Model Formulation 355
 10.6.2.1 General Foundations 356
 10.6.2.2 Flow Conservation Constraints 359
 10.6.2.3 Edge Capacity Constraints 360
 10.6.2.4 Additional Constraints 361
 10.6.2.5 Objective Function of the Model 363
 10.6.2.6 Estimation of Problem Size 363
 10.6.2.7 Computational Needs 364
10.6.3 Analysis and Reformulations of the Models 365
 10.6.3.1 Basic Structure of the Model 365
 10.6.3.2 Some Valid Inequalities: Edge Capacity Cuts 365
 10.6.3.3 Some Improvements to the Model Formulation 367
 10.6.3.4 A Surrogate Problem with a Simplified Cost Function 368
 10.6.3.5 More Valid Inequalities: Node Flow Cuts 370
 10.6.3.6 Some Remarks on Performance 370

10.7 Summary 370

10.8 Exercises 371

11 Other Types of Optimisation Problems ϖ 373
11.1 Recursion or Successive Linear Programming 373
 11.1.1 An Example 374
 11.1.2 The Pooling Problem 376
11.2 Stochastic Programming 380
11.3 Quadratic Programming 381
11.4 Mixed Integer Nonlinear Programming 385
 11.4.1 Definition of an MINLP Problem 385
 11.4.2 Some General Comments on MINLP 385
 11.4.3 Deterministic Methods for Solving MINLP Problems 387
 11.4.4 The Program DICOPT 389
11.5 Summary 389
12 Conclusion: The Impact and Implication of Optimisation 391
12.1 What the Users Can Get Out of the Case Studies 391
12.2 Benefits of Mathematical Programming to Users 392
12.3 Implementing and Validating Solutions 393
12.4 Communicating with Management 394
12.5 Keeping a Model Alive . 394
12.6 Mathematical Optimisation in Small and Medium Size Business395
12.7 On-Line Optimisation by Exploiting Parallelism? 396
 12.7.1 Algorithmic Components Suitable for Parallelisation . 396
 12.7.2 Non-determinism in Parallel Optimisation 397
 12.7.3 Platforms for Parallel Optimisation Software 398
 12.7.4 Design Decisions . 399
 12.7.5 Implementation . 400
 12.7.6 Performance . 401
 12.7.7 Acceptability . 401
12.8 Future Developments and Conclusions 402
12.9 Summary . 406

A Software Related Issues 407
A.1 Accessing Data from Harddisk 407
 A.1.1 The DISKDATA statement 407
 A.1.2 Connecting to Spreadsheets 407
A.2 List of Case Studies and Model Files 408

B Glossary 409

Index 427
List of Figures

1.1 Transforming a real-world problem 4
1.2 Graphical solution of an LP problem in two variables 13
1.3 Initial screen .. 19
1.4 New problem ... 20
1.5 Boats model ... 21
1.6 Changing minimise to maximise 22
1.7 Saving the file ... 23
1.8 Results from model 24
1.9 Erroneous model 25
1.10 Extended model 27
1.11 Results from extended model 28
2.1 Integer model .. 58
2.2 Progress to integer solution 59
2.3 Simple spreadsheet 60
3.1 Illustration of interior-point methods 85
3.2 LP relaxation and the first two subproblems of a B&B tree . 88
3.3 LP-relaxation, convex hull, and a B&B tree 93
3.4 Illustrating the idea of Branch & Cut 95
3.5 Feasible region of an LP problem 108
3.6 The revised simplex algorithm 110
3.7 Logarithmic penalty term 122
3.8 The Branch & Bound algorithm 131
3.9 Two Branch & Bound trees 133
4.1 Trimloss problem 136
4.2 Routes on transportation and transshipment networks 145
4.3 Flows between nodes of a network 149
4.4 Partial network [from Wilson and Willis (1983)] 152
6.1 Using S1 sets to select capacity size 200
6.2 Using S2 sets to model a nonlinear curve 202
7.1 Travelling salesman problem with four cities 222
<table>
<thead>
<tr>
<th>Figure Number</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.2</td>
<td>A set covering problem</td>
<td>226</td>
</tr>
<tr>
<td>7.3</td>
<td>Gantt chart showing the schedule</td>
<td>240</td>
</tr>
<tr>
<td>8.1</td>
<td>Cost as a function of number of items</td>
<td>261</td>
</tr>
<tr>
<td>8.2</td>
<td>Sensitivity analysis: objective versus optimal value</td>
<td>269</td>
</tr>
<tr>
<td>8.3</td>
<td>Sensitivity analysis: optimal value versus unit profit</td>
<td>270</td>
</tr>
<tr>
<td>8.4</td>
<td>Sensitivity analysis: slope of objective function</td>
<td>271</td>
</tr>
<tr>
<td>10.1</td>
<td>Production network with three sites</td>
<td>313</td>
</tr>
<tr>
<td>10.2</td>
<td>Illustration of a set-up change</td>
<td>318</td>
</tr>
<tr>
<td>10.3</td>
<td>Production plan</td>
<td>325</td>
</tr>
<tr>
<td>10.4</td>
<td>Precedence relations between jobs</td>
<td>347</td>
</tr>
<tr>
<td>10.5</td>
<td>Gantt chart and personnel occupation diagram</td>
<td>349</td>
</tr>
<tr>
<td>10.6</td>
<td>Cost of bandwidth for POP-to-POP private lines</td>
<td>354</td>
</tr>
<tr>
<td>10.7</td>
<td>A possible routing via hub sites for a demand D_{ij}</td>
<td>358</td>
</tr>
<tr>
<td>11.1</td>
<td>The pooling problem and a process unit fed by a pool</td>
<td>379</td>
</tr>
<tr>
<td>11.2</td>
<td>Convex and non-convex sets and functions</td>
<td>386</td>
</tr>
<tr>
<td>12.1</td>
<td>Speed-up achieved with eight slaves</td>
<td>397</td>
</tr>
</tbody>
</table>
Preface

This book arose from a realisation that modelling using mathematical programming should be tightly linked with algorithms and their software implementation to solve models. Such linkage is necessary for a full appreciation of the methods used to model problems that will ensure they can be solved successfully. While there exist textbooks concentrating on the pure mathematics aspects of optimisation, and others which just describe applications without providing sufficient technical background, we see our book as trying to provide a link between applications and the mathematics required to solve real-world problems. Few textbooks have integrated modelling with state-of-the-art commercially available software. Our book will also incorporate this missing link and will include the software to solve the models discussed.

Optimisation using mathematical programming is an important subject area as it can determine the dramatic savings available to organisations that could not be achieved by other means. In the book, examples are cited where organisations are saving many millions of pounds (sterling) or dollars (US) by using optimisation methods. Mathematical optimisation models are tools that can help people in the process of making decisions concerning the use of resources and saving costs.

Mathematical programming also provides a way to solve problems that, because of their size or other features, would not otherwise be solvable by other methods. In major cities, for example London, mathematical programming models influence the control of the flow of domestic water through the city as the model is used to determine the most efficient strategy to move water from source to user as peaks and troughs in the usage pattern develop. Thus, the results from mathematical programming models are literally all around many of us.

The need for a source book of material on the subject was recognised while teaching at Heidelberg University and Loughborough University and while planning conference sessions on the practical relevance of mixed integer optimisation.

Although there is an extensive literature on mathematical programming, the paucity of instructional materials in the area of efficient modelling and solving real-world problems is striking. The student, researcher, or indus-
trial practitioner must read between the lines of material, usually only available in journal articles or similar, to glean the details of the modelling process and the “tricks of the trade”. Yet the need is acute: as with many other areas of science, the computer revolution has given many modellers in industry as well as at universities the tools to attempt to solve realistic and complex models. In this work, we endeavour to provide a suitable background as an aid to the novice modeller, a useful reference book for the experienced modeller, and a springboard for the development of new modelling ideas. In particular, by tailoring the book around a commercially available software package we are able to illustrate some of the subtle details that determine the success or failure of the modelling efforts.

Readership
This book has been planned for use by more than one type of readership. Most of the book is designed to be used by readers who possess fairly elementary mathematical skills, i.e., the use of algebraic manipulation, and it is made clear which sections are not of this type. Further mathematical skills required are developed during the course of the book but the presentation should not prove too daunting. The material is suitable for use in courses in Business and Management Studies and operations research environments. Readers with stronger mathematical skills (e.g., linear and matrix algebra) and experienced practitioners in the field will still find much to interest them as the logic of modelling is developed. The book, therefore, will provide appropriate course material for lecture courses, short courses and self-teaching on the topics contained in it.

As some material is for the more advanced reader, or for the reader to use on a second pass through the book, certain sections in chapters have been marked as “advanced”. These sections may be omitted on a first pass through the book. The more advanced parts of the book are written in such a way that it is sufficient if the reader is familiar with the basic concepts and techniques of linear algebra. A discussion of some foundations of optimisation is provided at the end of some chapters, where it is helpful if the reader has familiarity with calculus techniques. It is also expected that the later advanced chapters will be read only once the reader has started to build models in earnest. A glossary at the end of the book will provide further help.

Scope
The focus of the book is primarily on models, model applications and individual case studies rather than algorithmic details. However, because the success of solution of complex problems requires efficient problem solving, it is important that models and algorithms are tightly connected. Therefore, we also concentrate on the mathematical formulation of models and the mathematical background of the algorithms. The understanding of the
mathematics involved in a problem or model explains why certain model formulations work well while others do not. We have tried to present in this book a self-contained treatment of the subject where possible. The presentation of the material is not too far away from what real modelling in business looks like. Most of the case studies have a commercial or industrial background. For instance, some of the case studies in Chapter 10 stem from problems recently analysed and solved in a mathematical consultancy group in the chemical industry.

Organisation

Chapter 1 gives an introduction and overview of the field. Parts of this chapter, in particular the details on the software used in this book, can be skipped by the experienced practitioner. An overview on the history of optimisation is presented in the appendix to Chapter 1. It is presented as an appendix because it requires some familiarity with the terminology of the subject. This chapter and parts of Chapter 2, illustrating how small linear and integer programming problems may be formulated, are kept on a very elementary level appropriate to the novice without a background in mathematics. In Chapter 3 we provide a systematic overview of mathematical solution techniques on both linear and mixed integer programming. Exercises are included at the ends of chapters. These exercises can be tackled by hand or by using the software, where appropriate, included with the book.

Types of linear programming problems and their modelling are discussed in Chapter 4. Chapter 5 is a collection of case studies in the framework of linear programming. Chapters 6 and 7 cover foundations of integer programming while in Chapter 8 case studies are discussed. In Chapter 9 we consider how practitioners may best set up and solve their optimisation problems and in Chapter 10 we consider examples of large cases. Then in Chapter 11 we consider other types of optimisation, e.g., sequential linear, quadratic and mixed integer nonlinear programming. Chapter 12 reflect the authors’ views on mathematical optimisation and modelling, how it is and should be used, and what is to be expected from it in the future.

Certain sections of chapters may be skipped by readers new to the area of optimisation. They are marked by ⊖ in the section heading. These sections should be read through when required on a subsequent reading.

Instructors Manual

An Instructors Manual is available to bona fide lecturers.

Acknowledgements

We would like to thank colleagues and mentors who have advised and/or inspired us over the years. These are too numerous to mention but we would like to single out Beate Brockmüller for providing material on the telecommunication network problem, Bob Daniel and Gunter Schnabel for the time they spent with us discussing the manuscript in great detail, Tom Horak,
Gernot Sauerborn, Anna Schreieck, James Tebboth, Christian Timpe and Max Wagner for reading the manuscript (JK), and inspiration from the work of Peter Hammer, Ailsa Land, Gautam Mitra, Paul Williams and the late Martin Beale (JMW). We also offer our thanks to Dash Associates for help, advice and cooperation over the inclusion of the XPRESS-MP software and related discussion material. JK wants to express his special thanks to Marilyn Dalton for her kind hospitality during numerous visits to Blisworth House. Finally, JK wants to thank the clients involved in some of the real-world cases. The interaction and communication with the clients, most of whom were enthusiastic persons with deep knowledge of the business process they wanted to improve using mathematical optimisation, was an important and irreplaceable resource which made the solution of challenging problems possible. Although, after all the years these people might have forgotten the work and the exciting time we spent together and might not be aware how they indirectly contributed to this book I want to mention them: Peter Bassler, David DeSantis, Andy Hayter, Klaus Kindler, Jan Orband, Gunter Schnabel, Hubert Smuda and Eckhardt Schubert.

Ludwigshafen and Loughborough 1997
Josef Kallrath and John M. Wilson

3Dash holds a copyright on parts of the following sections: 2.7, 10.1, 10.3 and 12.6.
4Of course, I hope they have not forgotten! All the special adventures involved in the time working on their problems fill a book on its own.