Interstellar Dust: Extinction and Thermal emission

The brightness of a star near any wavelength λ is measured either by its apparent and absolute magnitudes: m_λ and M_λ respectively:

$$
\begin{align*}
 m_\lambda &= -2.5 \log F_\lambda(r) + m_\lambda^o \\
 M_\lambda &= -2.5 \log F_\lambda(10\,pc) + m_\lambda^o \\
 m_\lambda &= M_\lambda + 5 \log \left(\frac{r}{10\,pc} \right)
\end{align*}
$$

If dust is present along the line of sight:

$$
 m_\lambda = M_\lambda + 5 \log \left(\frac{r}{10\,pc} \right) + A_\lambda
$$

Extinction at λ

Consider two different wavelengths, λ_1 and λ_2:

$$
 (m_{\lambda_1} - m_{\lambda_2}) = (M_{\lambda_1} - M_{\lambda_2}) + (A_{\lambda_1} - A_{\lambda_2})
$$

Observed color index, C_{12}

Intrinsic color index, C^0_{12}

Color excess, $E_{12} = C_{12} - C^0_{12}$
The Interstellar Extinction Curve

Both extinction and the color excess are proportional to the column density of dust grains along the l.o.s. If we consider another wavelength λ_3, the ratios A_{λ}/E_{12} and E_{32}/E_{12} depend only on intrinsic grain properties. Let the third wavelength to have an arbitrary value:

$$\frac{E_{\lambda-V}}{E_{B-V}} = \frac{A_{\lambda}}{A_V} = \frac{A_{\lambda}}{E_{B-V}}$$

$$R = 3.1$$

(in the diffuse interstellar medium; but can be ~5 in dense clouds because grains are larger)

![Interstellar Extinction Curve Diagram]

Transfer of Radiation: Intensity, Flux, Energy Density

- **Specific intensity**, I_ν: $\Delta E = I_\nu \Delta A_\nu \Delta t \Delta \Omega$

- **Specific flux** F_ν, or flux density, the monochromatic energy per unit area per unit time passing through a surface of fixed orientation z ($W \text{ m}^{-2} \text{ Hz}^{-1}$ or erg s$^{-1}$ cm$^{-2}$ Hz$^{-1}$ or Jansky = $10^{-26} \text{ W m}^{-2} \text{ Hz}^{-1}$):

$$F_\nu = \int I_\nu \mu d\Omega$$

- **Total energy density** u_ν, per unit frequency at a fixed location ($J \text{ m}^{-3} \text{ Hz}^{-1}$ or erg cm$^{-3}$ Hz$^{-1}$):

$$u_\nu = \frac{1}{c} \int I_\nu d\Omega$$

- **Mean intensity** J_ν, i.e. the average of I_ν over all directions:

$$J_\nu = \frac{1}{4\pi} \int I_\nu d\Omega = \frac{c}{4\pi} u_\nu$$
Assume that the radiation field travels along a small distance Δs. I_ν can be absorbed (radiative energy is transformed to internal motion of the grain lattice) and scattered (a photon with the same frequency is reemitted in a different direction):

$$\Delta I_{\nu 1} = -\rho \kappa_\nu I_\nu \Delta s$$

κ_ν is the opacity (cm2 g$^{-1}$), a quantity that depends on the incident frequency ν, the relative number of grains and their intrinsic physical properties.

$1/\rho \kappa_\nu =$ photon mean free path

$\rho \kappa_\nu =$ absorption coefficient (cm$^{-1}$)

The optical depth is defined by:

$$\Delta \tau_\nu = \rho \kappa_\nu \Delta s$$

I_ν can also increase due to the thermal emission from the dust:

$$\Delta I_{\nu 2} = +j_\nu \Delta s$$

j_ν is the emissivity (W m$^{-3}$ sr$^{-1}$ Hz$^{-1}$) (or erg s$^{-1}$ cm$^{-3}$ sr$^{-1}$ Hz$^{-1}$), such that $j_\nu \Delta \nu \Delta \Omega$ is the energy per unit volume per unit time emitted into the direction n.
The equation of transfer

\[\Delta I_v = \Delta I_{v1} + \Delta I_{v2} = -\rho \kappa_v I_v \Delta s + j_v \Delta s \]

\[\frac{dI_v}{ds} = -\rho \kappa_v I_v + j_v \]

Source Function

\[S_v = \frac{j_v}{\rho \kappa_v} \]
Optical depth (τ_λ) and extinction (A_λ)

Let's use the equation of transfer to obtain the specific intensity at a point P located at a distance r from the center of a star. Assume that $j_\lambda = 0$. Integrating the equation along any ray from the stellar surface to P, we obtain:

$$I_\lambda(r) = I_\lambda(R_*) \exp(-\Delta \tau_\lambda)$$

Let's now determine the Flux density ($\mu = 1$, and $\Delta \Omega = \pi R_*^2 / r^2$):

$$F_\lambda = \int I_\lambda \mu d\Omega$$

$$F_\lambda(r) = \pi I_\lambda(R_*) \left(\frac{R_*}{r} \right)^2 \exp(-\Delta \tau_\lambda)$$

Assume now that the same star is located at r_0 from P, with no intervening extinction:

$$F_\lambda^*(r_0) = \pi I_\lambda(R_*) \left(\frac{R_*}{r_0} \right)^2$$

Dividing (a) by (b) and taking the log:

$$-2.5 \log F_\lambda(r) = -2.5 \log F_\lambda^*(r_0) + 5 \log \left(\frac{r}{r_0} \right) + 2.5 \log(e) \Delta \tau_\lambda$$

$$m_\lambda = M_\lambda + 5 \log \left(\frac{r}{10 \, pc} \right) + A_\lambda \Rightarrow A_\lambda = 2.5 \log(e) \Delta \tau_\lambda$$

$$A_\lambda = 1.086 \Delta \tau_\lambda$$
Blackbody Radiation

A black body is a theoretical object that absorbs 100% of the radiation that hits it. Therefore it reflects no radiation and appears perfectly black.

At a particular temperature the black body would emit the maximum amount of energy possible for that temperature. This value is known as the black body radiation. It also emits a definite amount of energy at each wavelength for a particular temperature, so standard black body radiation curves can be drawn for each temperature, showing the energy radiated at each wavelength.

\[
\begin{align*}
B_{\nu}(T) &= \frac{2h\nu^3 / c^2}{\exp(h\nu / k_B T) - 1} \\
B_{\lambda}(T) &= \frac{2hc^2 / \lambda^5}{\exp(hc / \lambda k_B T) - 1}
\end{align*}
\]

Blackbody radiation is radiation in thermal equilibrium and it is isotropic, i.e. the specific intensity \(I_\nu \) is independent of direction:

\[
I_\nu = \frac{1}{c} \int I_\nu d\Omega \Rightarrow I_\nu = cu_\nu / 4\pi \equiv B_\nu
\]
Blackbody Radiation

Stars are so optically thick at all frequencies that its matter and radiation are very nearly in thermal equilibrium.

\[I_\lambda (r_s) = B_\lambda (T_{\text{eff}}) \]

\[F_\lambda = \int I_\lambda d\Omega \]

\[d\Omega = 2\pi d\mu \]

\[F_\lambda (R_s) = \pi B_\lambda (T_{\text{eff}}) \]

Wien's displacement law:

\[\frac{v_{\text{max}}}{T} = \frac{2.82 k_B}{h} = 5.88 \times 10^{10} \text{Hz K}^{-1} \]

\[\lambda_{\text{max}} T = 0.29 \text{ cm K} \]

Much of a person's energy is radiated away in the form of infrared light.
Blackbody Radiation

\[F\lambda(R_s) = \pi B\lambda(T_{eff}) \]

\[B\lambda(T) = \frac{2hc^2}{\lambda^5} \exp\left(\frac{hc}{\lambda k_B T}-1\right) \]

Integrating \(F\lambda(R_s) \) over all wavelengths, we obtain the bolometric flux \(F_{bol} \):

\[F_{bol} = \frac{2\pi k_B^4 T_{eff}^4}{c^2 h^3} \int_0^\infty \frac{y^3 dy}{e^y - 1} \]

\[\pi^4/15 \]

\[F_{bol} = \frac{2\pi^5 k_B^4}{15c^2 h^3} T_{eff}^4 = \sigma_B T_{eff}^4 \]

\[L_{bol} = 4\pi R_s^2 \sigma_B T_{eff}^4 \]

\[\sigma_B = 5.67 \times 10^{-5} \text{ erg cm}^{-2} \text{ s}^{-1} \text{ K}^{-4} \]

Stefan-Boltzmann constant

Interstellar Dust: Properties of the Grains

1. Efficiency of extinction

\[\frac{dI_\nu}{ds} = -\rho \kappa_\nu I_\nu + j_\nu \]

The opacity \(\kappa_\nu \) represent the total extinction cross section per mass of interstellar material. To explore the contribution of each grain:

\[\rho \kappa_\nu = n_d \sigma_d Q_\nu \]

\(n_d \equiv \) number of dust grains per unit volume (number density)

\(\sigma_d \equiv \) geometrical cross section of a typical grain

\(Q_\nu \equiv \) extinction efficiency factor

\[\Delta \tau_\nu = \rho \kappa_\nu \Delta s \]

\[A_\nu = 1.086 \Delta \tau_\nu \]

\[Q_\nu \propto A_\nu / N_d \]
At far-infrared and millimeter wavelengths, the ISM is generally transparent, so one needs to observe the emission from heated dust clouds to determine A_λ and Q_λ. From the equation of radiative transfer, ignoring the absorption term and assuming optically thin conditions:

$$I_\lambda = B_\lambda(T_d) \Delta \tau_\lambda$$
$$F_\lambda = B_\lambda(T_d) \Delta \Omega \Delta \tau_\lambda$$

Knowledge of A_ν and T_d can give information on the wavelength dependence of Q_λ, but the determination of both A_ν and T_d is usually problematic. It is conventional to write $Q_\lambda \propto \lambda^{-\beta}$, with $\beta \approx 1-2$ between $30 \mu m \leq \lambda \leq 1 mm$. β is smaller in the densest clouds and circumstellar disks, but closer to 2 in more diffuse environments.

In general, the opacity and efficiency factor of a grain does not depend on λ once the geometric size becomes larger than λ. Hence, centimeter-size grains have a small exponent β in the millimeter.

2. Size distribution

$$dn_d = C n_H a^{-3.5} da, \ a_{\text{min}} < a < a_{\text{max}}$$

$$a_{\text{min}} = 50 \mu m, a_{\text{max}} = 0.25 \mu m$$

$$C = 10^{-25.13}(10^{-25.11}) \ cm^{2.5} \ for \ graphite \ (silicate)$$

Although most of the mass is in $0.1 \mu m$ grains, the surface area is mainly in small particles.

Useful parameter: Σ_d, the total geometric cross section of grains per hydrogen atom:

$$\Sigma_d = \frac{n_d \sigma_d}{n_H}$$

Mathis, Rumpl & Nordsieck 1977
Weingartner & Draine 2001
3. The dust-to-gas mass ratio

\[\Sigma_d = \frac{n_d \sigma_d}{n_H} = \frac{N_d \sigma_d}{N_H} \]

\[N_d \equiv n_d L; \quad N_H \equiv n_H L \]

\[\rho \kappa_\lambda = n_d \sigma_d Q_\lambda \quad \Rightarrow \quad \Delta \tau_\lambda = N_d \sigma_d Q_\lambda \]

\[\Sigma_d = \frac{\Delta \tau_\lambda}{Q_\lambda N_H} = \frac{A_\lambda}{1.086 Q_\lambda N_H} \]

When \(\lambda = V \), \(Q_\lambda = 1 \) (van der Hulst 1981; Tielens 2005):

\[\Sigma_d = \frac{A_V}{1.086 N_H} = \frac{A_V / E_{B-V}}{1.086 N_H / E_{B-V}} = 2.9 \frac{E_{B-V}}{N_H} \]

From Bohlin, Savage & Drake (1978), \(E_{B-V}/N_H = 1.7 \times 10^{-22} \) mag cm\(^2\).

\[\Sigma_d \approx 5 \times 10^{-22} \text{ cm}^2 \]

The mass fraction of the interstellar medium contained in grains, \(f_d \):

\[f_d = \frac{m_d n_d}{m_{\text{gas}} n_{\text{gas}}} = \frac{4 \rho_d a_d \Sigma_d}{3 \mu m_H} \equiv 0.01 \]

\(f_d = Z \), the metallicity of the gas \(\Rightarrow \) a large portion of heavy elements must be locked up in solid form!
Observations at non-visible wavelengths reveal the shape of the Galaxy

At visible wavelengths (λ), light suffers so much interstellar extinction that the galactic nucleus is totally obscured from view. But the amount of interstellar extinction is roughly inversely proportional to λ.

As a result, we can see farther into the plane of the Milky Way at infrared λ than at visible λ, and radio waves can traverse the Galaxy freely.

Starlight warms the dust grains to $T \sim 10$ to 90 K. Thus, from Wien’s Law:

$$\lambda_{\text{max}} = \frac{0.0029 \text{ K m}}{T}$$

the dust emits predominantly at $\lambda \sim 30$ to 300 μm. These are far-infrared (FIR) λ. At these λ, interstellar dust radiates more strongly than stars, so a FIR view of the sky is principally a view of where the dust is.